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CONTINUOUS ANALYSIS OF STRESSES FROM
ARBITRARY SURFACE LOADS ON A HALF SPACE
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Abstract-A new form of elemental surface load on a half space is introduced, presuming a quasi-pyramidal
variation of load which is doubly linear in each of four rectangular parts of a surface rectangle. Approxima­
tions of arbitrary load distributions by sums of such elements are continuous, piecewise linear in two directions
and well adaptable. The loads may be normal or tangential. The explicit solution!> obtained for all !>tre!>!> and
displacement components due to each elemental load involve only elementary functions, are free of the
discontinuities which arise with stepwise elements, and are suitable for computing. Some illustrative stress
distributions are presented for elemental loads and for multiple pyramidal loads involving both normal and
tangential loads. The value of the load continuity in the more complicated analyses of surface cracks is also
illustrated.

INTRODUCTION

Many stress analyses involve effects due to forces on the surface of a half space distributed in
patterns which may be simple or complex and which may be initially known or unknown.
Analyses involving force patterns initially unknown include those for contact of elastic bodies.
those for crack stresses to be freed on body surfaces and various ones for bodies loaded on
more than one face. For some situations, such as Hertzian contact, the surface force dis­
tributions to be considered may be confined to some restricted general form; but for some
situations the form must be very adaptable, such as for freeing loads in crack stress analysis.
FOr the crack stress analysis there is also an advantage in keeping the freeing loads continuous
since that allows an important checking process[l] and the property of continuity may well
prove helpfUl as well as reasonable for many types of analysis. Thus the aim of the present
theory is to treat effects from surface loads, both normal and tangential, in generality sufficient
to consider arbitrary load distributions at least approximately without introducing artificial load
discontinuities and their consequent distortion of stresses.

One method that has been used to treat an arbitrarily distributed normal load on a half space
is to approximate its effects as being resultants of numerous point loads. This is the method
applied, e.g. by Conry and Seirig in their study of elastic contact[2]. For some purposes use of
point loads can suffice, despite its implied gross distortion of stresses on and near the surface.
including even infinitudes in the applied load; but if the behavior of stresses at the surface is at
issue then this approach is inadequate.

An early theory which allows treatment of arbitrarily distributed normal loads on a half
space in terms of finite loads is that of Love[3], who considered effects of a uniform normal
load acting on a surface rectangle. By adding effects from such loads on many rectangles with
arbitrary individual intensities, one may treat effects from arbitrarily distributed pressure.
However, at the borders of rectangles all three normal components of stress then may jump and
at the corners of the rectangles one shear stress component may approach infinity logarithmic­
ally, as will be illustrated later. A parallel theory derived by Smith and Alavi[4] treats stresses
due to uniform shear load on a rectangle. By adding the effects of such loads acting on many
rectangles the effects of arbitrarily distributed shear loads can be treated, but where the surface
load intensities jump a logarithmic singularity is implied either in two normal stress components
or in one shear component, as is partially illustrated later. There may be analyses for which
such discontinuities may be tolerable, but the discontinuities are almost always unrealistic and
in some contexts they may be intolerable.
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In order to get a continuous analysis of stresses due to an arbitrarily distributed pressure on a
half space. Batra and Bell [5) considered effects due to normal loads linearly interpolable in both
directions over a surface rectangle, with arbitrary intensity at each corner. By joining effects
from many such loads meeting continuously at the edges of adjoining surface rectangles. it was
found possible to approximate an arbitrary pressure distribution and yet imply only continuous
stresses on the surface since singularities arising from loads on adjacent rectangles cancelled
each other. In calculations using this theory the infinite stresses implied by some formulas along
the edges of rectangles were to be eliminated by an appropriate bookkeeping procedure on the
basis of their expected cancellation by other infinite stresses.

The present theory again seeks representation of arbitrary loads in continuous fashion by
presuming linear interpolability in two directions. but two kinds of advance are made beyond
the theory of Batra and Bell. In the first respect. a new kind of elemental load is employed
which of itself eliminates all the discontinuities of stress components on the surface of the half
space, and in doing so leads to stress formulas simpler than those of the earlier theory. In the

quarter pattern for Pmm quarter pattern for Pum

Pum

sum of four surrounding quarter patterns

quarter pattern for Pmt quarter pattern for PuL

a. Breakdown of rect ilinear load pattern into quarter
patterns determined by the corner values

Pmm - Pm

1.yu

~t ~u
b. Pyr:\mt.!:ll 10<1d !".1ttcrn ari",ing from four qU'lncr pattcrns

dctermiucd by thc same corner value

Fig. I. Pyramidal load pattern providing load representation equivalent to that with doubly linear patterns on
squares.



Continuous analysis of stresses from arbitrary surface loads on a half space 1071

second respect, tangential as well as normal loads on the surface are considered, so that a
unified treatment is provided embracing all the possible kinds of surface loads. The formulas
for stresses and displacements to be derived here follow from theories already advanced by
Lundberg[6] for generalized surface loads, but considerable organization is required in order to
get the final concise results to be presented here.

CONCEPT OF PYRAMIDAL LOAD ELEMENTS

To understand the basis for choosing the form of load elements to be used here, whether
they are for normal or tangential loads, one may begin with an element in which the load varies
linearly in both directions over a rectangle, as shown by the central drawing in Fig. 1(a). Such a
load can be decomposed into four parts such that in each part the load varies linearly in both
directions and the only nonzero corner value is the same as a corner value in the original
element, as is shown also in Fig. l(a). If such a decomposition is applied to doubly linear load
elements of four rectangles sharing a corner and having matching sides and if their components
associated with the shared corner are combined, the resulting load distribution has the form
shown in Fig. 1(b). Distributions of this form will be called pyramidal, since this roughly
describes their shape, though the four partial distributions are really hyperboloidal. It should be
noted that the four base rectangles may have quite different dimensions; all that is required in
that regard is that the four base rectangles together form another rectangle.

If two or more pyramidal loads have overlapping bases with the same orientations, then
over any shared rectangle their resultant load also varies linearly in both principal directions.
Thus, with only mild restraint, one may subdivide an area over which an arbitrary load is to act
into rectanglar parts of various dimensions and then assign arbitrary pyramidal elements which
should be conformable to that load, subject only to the suitability of doubly linear interpolation
within each rectangle. To get a full representation of possible load distributions, the subdivision
into rectangles should normally allow placement of a pyramidal peak wherever two lattice lines
fully cross each other. A scanning of a proposed subdivision can show whether it provides a
base for a pyramidal load at each such crossing point. Of course, the overall load represented
will vanish at the outer border of the set of rectangles, but if a steeply dropping load is desired
then narrow rectangles can be used.

a. Resultant of Pyramidal Loads Fitted to Conditions in Part b

b. Representative Surface Lattice and Total Loads at Pyramid Points

Fig. 2. lliustration of a load represented by pyramjdal elements.
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Figure 2 provides an example of how an array of pyramidal load elements can represent a
load distribution. Figure 2(b) shows a portion of a plane divided into rectangles and it can be
seen that a pyramidal load element may have its peak at any point where two lattice lines fully
cross, these points being marked by filled dots. At interior points where the lines meet but do
not cross, as marked by open dots, pyramidal peaks are not required. Any load intensities might
be assigned at the pyramid points (filled dots), but by taking those loads as shown in Fig. 2(b)
one defines the interpolated load distribution shown in Fig. 2(a). If the smallest possible
pyramidal bases are used, then at six of the pyramid points only one load element differs from
zero, but at one point (marked "2") two load elements contribute. Inside all the rectangles,
except those at the outside corners, two or more pyramidal load elements contribute. Combin­
ing seven such elements allows full fitting for any load distribution which is doubly interpolable
in each rectangle of Fig. 2(b) and which vanishes along the outer edge.

'DEVELOPMENT OF POTENTIAL FUNCTIONS

Using a rectangular coordinate system (x, y, z), with Z being depth below the surface of a
half space, consider a pyramidal load acting on a base defined by lines where x =x" xm, or Xu
and y =Y" Ym, or Yu as shown in Fig. 3. In order to reserve x, Y, and Z as coordinates where
stresses or displacements are to be evaluated, let { and." denote the x and Y coordinates where
a part of the load acts. Three forms of load are to be considered, namely, p({, 7/) - -uz({, T/,O),
s({, 7/) - Tu ({, 7/,0) and t({, 7/) - TyA{, 7/,0), but momentarily consider only a load p({, 7/) and let
its maximum value be Pm where {= x'" and 7/ =Yin' It can be seen that over the four parts of
the base it must be

p({, 7/) =

p",(xu - {)(Yu - y)!(lxu1yu) in Area I,

p",({ - x,)(Yu -7/)!(lx/1yu) in Area II,

P",(~-XI)(T/ - y/)!(lx/1y/) in Area III,

p",(xu - ~)(7/- y,)!(lXU1y,) in Area IV,

(I)

and it must vanish beyond these areas. Here IxJ, lxu, Iyl, and lyu are dimensions of the component
rectangles as shown in Fig. 3. It is advantageous to employ x and y components of distance
from a point (x, Y, z) where effects are felt to the point ({, T/,O) where load is acting, so let them
be

a = ~ - x, {3 = T/ - Y,

y

(2)

t yu
II I

• (f;. n)

III IV

txt t xu

x = X
Dl x - xm

o,L---------------------- X

Fig. 3. Notation used in defining bases for pyramidailoads.
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and let a" au, 13" and 13u be their values when ~ and 11 are at the extremities of the base of the
pyramidal load, that is

a, =XI - X, au =Xu - x, (31 =Y, - y, ~u =Yu - y.

Then again the load distributions over the four parts of the base are

(3)

p(~, 11) == p(a, 13) =

Pm(au - a )({3u - (3)/(I/XUlyu) in Area I,

Pm (a - a, )({3u - (3)/(/x,l yu) in Area II,

Pm(a - a/)({3 - (3,)/(Iix,ly,) in Area III,

Pm(au - a)({3 - (3,)/(fx)y,) in Area IV.

(4)

Similar expressions hold for tangential loads s(~, TJ) == s(a~ (3) and I(~, TJ) == t(a, {3), but with
peak values Sm or 1m replacing Pm·

In his analysis of stresses due to loads arbitrarily distri1l>uted on a half space, Lundberg[6]
introduced the following functions:

J
+'L aL f'" aL

M(x, y, z,~, TJ) = : ax dz; N(x, y, z, 4 TJ) = z ay dz,

and he showed they could be used advantageously in expressing these potential functions:

(5)

(6)

(7)

He further showed how all the stress and displacement components can be expressed in terms
of assorted (and often multiple) derivatives and integrals of V, Sand T, so in principle all that
needs to be done is to perform the steps he indicated usinglloads of the form shown in the eqn
(4), but the algebra involved is burdensome and occasionallly devious.

Evaluation of M and N shows that V, Sand T here h~ve the forms

v =4~ f;" (" {y(a~~~~~ Z2) +ai(a, ~~: ~f(a,Pl [1- y(a2 /{32 +Z2)]} da d{3

S ==! (P. fa. s(a'l) df d~ T =.=...! J. p
" fa•..f1Cf'l) df d~

21T JfJ/ a, y(a +{3 +z )' 21T fJl a/ y(~ +{3 +Z r
Since p(a, {3), s(a. {3) and t(a, (3) all involve only terms which are constants multiplied by 1, a,
{3 or a{3, there are only twelve integrations needed for the eqns (7). In the integration it is
convenient to put

p =y(a2+{32 +Z2)

01 = arctan I!. - arctan lB.,
a ap

(8)
a ~O2 = arctan - - arctan{3 {3 ,

03=arctan~
zp'
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(9)

and to use principal values for the arctangents (that is > - 7T/2 and,,;; 7T/2). Then, using some
formulas given by Batra and Bell in their appendix t . one can show that in their indefinite forms
the integrals needed for the eqn (7) are

gll(a, 13. z) == JJda
p
d

f3
= f3ln(a + p)+ a In(f3 + p)-z8J,

JJ adad f3 f3p a 2 +z2

gda,f3,z)== p =-r+-2-ln(f3+p),

, JJ13 da df3 ap 13
2+ Z2gma,13, z)== p =-r+-2-ln(a+p),

gI4(a, 13, z) == JJaf3 dpa df3 = pJ/3,

g21(a, 13, z) == JJ(1-~):~: ~~ = f3ln(z + p) + z In(f3 + p) + a8 io

JJ( z )a2da df3 af3 a 2 132 Z2
g22(a, 13, z) == I- p a2 + 132 = T- f3z In(a + p) +"281-"282 +2 8J,

-JJ( z)af3 dad{3 a
2
+t !J!.g2J(a,13, z)= I- p a2+f32 = 2 In(z+p)+2'

JJ( z )a2f3 da df3 af32 aZp a 3 z f3J
g24(a, 13, z)== I- p a2+ 132 = -3-+T+T 1n(z + p)-1Pf32+ Z2) In(a + p)-T 82,

gJI(a, 13, z) == JJ(1-~)~~: ~~ = a In(z + p) + z In(a + p) + 1382,

JJ( z)af3 da d{3 a2+ 132 zp
gn(a, 13, z) == I- p a2 +132 =-2- ln(z +p) +"2'

JJ( z)tdadf3 af3 a 2 13 2 Z2
gJJ(a, f3,z)== I- p a2+f32 =T-azln(f3+p)-"281+"282+28J'

JJ( z )af32 da df3 a 2f3 lEE. 133 z a 3

g3ia,f3, z) == I- p ~2+ 132 = -3-+ 6 +Tln(z + p)-~3a2+ z2)ln(13 + p)-T 81•

Here terms lacking either a or 13 have been dropped, since they would drop when limits are applied
to the integrals as required by the equations (7).

Let VO) be the parts of V contributed by the normal loads. Then letting also am = Xm- X and
13m = Ym - Y, the contributions to V(I) from the loads on the four component rectangles are

V~I) = 4 ~m / {au13u[gll(au, f3u, z) - gil(au, 13m, z) - gll(am, f3u, z) +gll(am, 13m, Z)]
7T xu yu

-13u[gdau, 13u, Z) - gdau, 13m, Z) - gI2(am, 13u, Z) +gI2(am, 13m, Z)]

-au[gn(au, 13u, Z) - gl3(au, 13m, Z) - gl3(am, 13u, Z) +gl3(am, 13m, Z)]

+ [gI4(au, f3u, Z) - gI4(aU, 13u, Z) - gliam, 13u, Z) +gI4(am, 13m, Z)]

vW =4 P/m/ {-a,13u[gll(am, 13u, z) - gll(am, 13m, z) - gil(ai, 13u, z) +gll(a/o 13m, Z)]
7T xl yu

+13u[gI2(am, 13u, Z) - gI2(am, 13m, Z) - gda" 13u, Z) +gl2(a/o 13m, Z)]

+a,[gl3(am, 13u, Z) - gl3(am, 13m, Z) - gl3(a/o 13u, z) +gl3(a" 13m, z)]

- [gliam, 13u, Z) - gl.(am, 13m, Z) - gI4(a" 13u, Z) + glia" 13m, Z)]},

tThe formulas provided there are summarized here in Appendix A.

(10)
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V~H =~4Iml a,/MglI(am, (3m, Z) - gll(am, (3" Z) - gll(a/. f3",. z) +gll(a/. (3" Z)]
~xJ l'

-{3,[gdam, (3m, Z) - g'2(am, (3" Z) - gI2(a" f3",. z) +gda/. (3" Z)]

-a,[gl3(am, (3m, Z) - gl3(am, (3" Z) - gl3(a" (3m, Z) +gl3(a" (3" Z)]

+ [g'4(am, (3m, Z) - gI4(am, (3" z) - glia" (3m. z) + glial, (3" z)].

VW =~41mI -au{3,[gll(au, (3m, z) - gll(au, (3" z) - gll(am, (3m. z) + gll(a",. (3" Z)]
11' xu ,/

+ {3/[~d(l'u, (3",. Z) - ~d(ru. (3/. z) - ~12«(r",. (3",. z) + ~12«(r"" {3" z)1

+ au [gl3(au, (3m, z) - gl3(au, (3" z) - gl3(am• (3"" z) +gn(am, (3" z)]

- [gl.{au, (3m, z) - gI4(au, (3,. z) - g'4(am•(3m, z) +g'4(am, {3" z)]}.

The required summation of these parts is aided by facts such as

Accounting for such relations, one finds from the addition of all the parts of VlIl that

1075

VO) == V~I) + VW + V~H + VW

= :;[a{3g II (a, (3, z) - {3g'2(a, (3, z) - agl3(a, (3, z) +gI4(a, (3, z»*, (II)

where the asterisk denotes the following weighted sum of evaluations of any function F(a, (3, z) at
the nine corners in the pyramidal base:

(12)

I (I 1)1 I+-11F(al,f3"z)- -I +-1 -IF(am,{3"z)+/TF(au,{3"z).
xl yl xl xu yl xu )./

It can be shown that terms of any F(a, (3, z) which are constant or linear in either a or {3 cancel in
this sum. Thus it has been shown that if one further defines

gl(a, (3, z) =,a{3g'l(a, (3, z) - {3gda, (3. z) - agl3(a, (3, z) + g'4(a, (3, z)

(32 - Z2 a 2 - Z2
= -6-[3a In(a + p) - p] +-6-[3{3ln({3 +p) - p] - a{3z8), (13)

then

V(I) = :;[gl(a, {3, z)]*. (14)

Since the grouping of terms from the eqns (10) leading to eqn (II) used no property of the
glj(a, (3, z) other than their evaluability, it can be seen that it is useful also to introduce the
functions

g2(a, (3, z) = a{3g21(a, f3, z) - {3g22(a, (3, z) - ag2)(a, (3, z) + g24(a, (3, z)

= ~(3{32 - Z2) In(a +p) + a{3z In({3 +p) - i(a2 - 3(32) In(z +p) (15)

+!!Ji 8 +f£. 8 - (3z2 8 _!EE. _~
2' 6 2 2) 3 6'
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Then also it follows that the potential functions are

(17)

Considering their origins, these functions are remarkably compact. Compactness is important for
the voluminous steps yet to be taken. (One may note also that the terms a{32/6 in g2 and a2f316 in g3

may be dropped from eqn (17) because of their linearity in a or {3. Such deletions are often helpful
in the steps remaining.)

STRESSES AND DISPLACEMENTS DUE TO PYRAMIDAL LOADS

To systematize the derivations when three kinds of pyramidal loads can be applied
simultaneously over the same base, let

(18)

Then it has been shown that

2V =-2
1 [± C;gi(a, (3. z)]*,
1r 1=1

(9)

It may be observed that

(20)
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Then. from Lundberg's eqn (6), the stresses and displacements throughout the half space are
given by:

(21)

Here E is Young's modulus, /I is Poisson's ratio, the stress components are 0'1<' 0',. O'z. 1'1<,.1,z. Tzz,and
the displacement components are u, v, w.

The algebra required to complete the derivation of formulas for the stress and displacement
components is long enough so that it is reasonable to record some intermediate steps. In particular
it involves integrations with respect to z over an infinite range. several of which require summation
of corner evaluations as in eqn (12) to secure convergence. Atable of evaluations for key infinite
integrals is provided in Appendix B. Another key relation is that if z ;Ill 0(as it is in the half space).
thent

(22)

Thus

These relationships aid in evaluating the many derivatives and integrals of 8" 82 and 83
appearing in the eqn (21). Forms of those derivatives and integrals suitable for use in the eqns

tTrigonometric identities and simple algebra show

arctan I!!. +arctan az =arctan E!.. =.!sgn a{k - arctan !!l!..
ap flp afJ 2 zp

9, +92 = (arctan! +arctan ~) - (arctan :; +arctan ;;)

~ ~ afJ ~'" "2 sgn a/3 -"2 sgn a/3z +arctan zp ="2 sgn a/30 - sgnz) +9).

Here sgn X = -lor I according as X < 0 or X .. O.



1078 J. C. BELL

(21) can thus be found and they are tabulated in Appendix C. Combining these results leads to
formulas for the stresses and displacements in these forms:

3

ax =L c;KJ'(x, y, zl.
;=1

3

'TXY =L c;K?(x. Y. z),
;=!

3

a\, = L c;Kt(x. Y. z).
i=!

L

'T.I·! = L c;Krt(x. y, Z),
;=!

3

at =L c;Kft(x. Y. z).
;=!

3

'Tzx = L c;KfX(x, Y. Z),
;=!

(23)

3 3 3

2/LU = L cjK7(x, Y. Z), 2/LV = L cjKnx. y, z), 2/Lw = L cjKj(x, y, z).
i=1 i=! j=!

Here /L is the shear modulus, that is /L =E1[2(1 +v)], also

Kf(x, y, z) =- 2~[Hi(a, (3, z)]*, Kf'(x, y, z) =- 2~[HfY(a, (3, z)]*, (24)

and so forth, for Kf", Kr', .•., Ki, where the functions Hi and so forth are:

Hf = -2zp + az In(a + p) + 2{3z In({3 + p) + a{3fh +(1- 211){1--az In(a + p)

a 2 {32 }- -2- ln(z + p) - a{382

1 3({32 - Z2) {~
Hf =Zap - 2 In(a + p) - 2a{3ln({3 + p)+ 3{3z83 +(1- 2v) 2

{32 Z2 }
+-2-ln(a + p) - aZ In(z + p) - {3Z82

Hf = (3p- af3ln(a +p)+ z2In({3 +p)+az83+(1-2v){-(3p+a{3ln(a +p)

+f3z In(z +p) - aZ82}

Hf' = - 2zp +2az In(a + p) + f3z In(f3 + p) +af383+(1- 211){1- - f3z In({3 +p)

a2 f32 }+-2-ln(z+ p)-af38J

Hf =ap +z2ln(a + p)- a{3ln(f3 +p) + f3z83 +(1- 2v){-ap + af3ln(f3 +p)

+az In(z +p) - {3Z8\}

I 3(a2- Z2)
H~Y = 2f3P - 2af3ln(a + p)- 2 In(f3 +p) + 3az83

+(1- 2v){'+a
2
~ z2 In({3 +p)-f3z In(z +p) - aZ8\}

Hft = zp +af383

H~t =-z2 In(a + p) - f3z83

Hf = -z2In(f3 +p) - az83

(25a)

(25b)

} (2Sc)
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Hty= ~Z In(a + p) + aZ In(~ + p) - z2(h + (1- 2/1){~Z In(a + p) + az In(~ + p)

1 1 Z2}
+a~ In(z + p)+2a281 +2~282-283

{
~ a2 Z2

H~y=~p-a~ln(a+p)+z2In(~+p)+az8)+(1-2J1) - 2 -+In(~+pJ

+~z In(z + p)+ aZ81}

{

~ ~2 Z2
H~y = ap + z2ln(a + p)- a~ In(~ + p) + ~Z83 + (1- 2/1) - 2 -+In(a + p)

+az In(z + p) + ~Z82}

H {Z =z2In(~ + p) + az83

HIz = -~z In(a + p) - az In(~ + p) + z283

HJz = 2zp - 2az In(a + p) - ~z In(~ + p) - a{383

Hf =z2ln(a + p)+ ~z8)

Hf = 2zp - az In(a + p) - 2{3z In({3 + p) - a{383

HJ' = -(3z In(a + p) - az In({3 + p) + z283

~ ~-~ {~Hr= 2 -2 In(a+p)-a{3zln({3+p)+{3z203+(l-2/1) 3

_ z(3t- Z2)ln(a + p)_ a~z In({3 + p)+ a(a
2
-3{32) In(z + p)_ a

2
(J81

662

+(J(ti 3z
2
) In(a +p) +a(a

2i 3z
2
) In({3 + p) - a{3z In(z + p) _ a

2;8,

1079

(25d)

} ~e)

} (250

(26a)
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{3'p '(a" - ,c) {{3~p
HI= ; -a{3z1n(a+p)-~ :2 ~ In(f3+p)+a: 283+(l-2v) T

z(3a C
- :2) {3(3a 2 - 132)

- a{3Z In(a + p)- 6 In({3 + p) - 6 In(z +p)

_ a:81_ af3;82+aZ;Oi}

H l' = _ af3p _ 13(13
2
+ 3z

2
) In(a + p} _ a(a

l
+ 3z

2
} In({3 + p} + Z3 (h +0-2v}{af3p +

2 3 6 6 3 3

f3({32 - 3z2) a(a2- 3z2)
+ 6 In(a + p} + 6 In(/3 + p) - a{3z In(z + p)

_ a 2zB I _ {32z02+Z38J }

2 2 6

Hj =- (a
2
-
2
2Z

2
)p + a(/32~ 3z

2
) In(a + p)+ (3(a 2- Z2) In({3 + p)-2a{3z(J3

{
{32 p3 ({32 - Z2) zea" -(3") }

+(\-2/1) _¥+7;+a 2 In(a+p)- 2 In(z + p)-a{3z82

HI<' = pJ+~_ a({32+ z2)ln(a + p)_{3(a
2
+ Z2) In(/3+ p)+(1- 2v){p3_~

! 62 2 2 62

_ a ({32
2
- z2)ln(a +p)_/3(a~- Z2)ln({3 + p)+ a/3z03}

Hi = - a~p +Z(/32
2
- Z2) In(a + p) +a{3z In(/3 +p) - {3z283+(1 - 2p){a~p

_ z(3{3~- Z2) In(a +p)-a/3z In(/3+ p)+ a(a2~3{32)ln(z+p)_ a2~OJ

_ t02 + /3Z2 83}

6 2

/3zp z(a2- Z2) {R7p ,Hi =- T + a/3z In(a +p)+ 2 In(/3 + p)- az203 +(1- 2p) T -- a/3z In(a + p}

_ z(3a
2

- Z2) In({3 +p) _/3(3a
2
- t) In(z + p) _ a301 _ at02+ aZ

2(h}
6 6 6 2 2 .

(26b)

(2&)

Termwise examination of these functions Hfx through Hf shows the disposition of
discontinuities which might have remained in the influences of the three load constants on the
stresses and displacements. The function In(a + p), which occurs frequently, becomes singular
if /3 = z = 0 and a ~ 0, but each occurrence of it is multiplied by a factor involving /3 and/or z in
such a way that the product vanishes in the limit as (3 and z vanish. The singUlarities in
In(/3 + p) which arise where a = z =0 and /3 ~ 0 are likewise obliterated by factors involving a
andlor z. The singularities in In(z + p) which arise where a, /3 and z vanish are obliterated by
factors involving a andlor /3. Jumps may occur in the arctangents for 81 as a passes through
zero, but in all but one occurrence of 81 these jumps are obliterated through multiplication by a.
The lone exception is the term /318\ in H1', but here 81 itself is continuous as a passes through
zero if z > 0, and if z =0 the product pzel vanishes and is still continuous though a passes
through zero. Similar jumps which may occur in the arctangents for 82 as (J passes through zero
are obliterated by a factor /3 except in the term a182 in H ~x, but there the vanishing of 82or z
assures continuity as /3 passes through zero. The arctangent for 8) varies continuously if z > 0,
but if z-+O then B3-+(1T12)sgn(a{J) which jumps as a{J passes through zero. However, all
occurrences of 83 in Hf through Hi include either a factor z or a factor a{J, so again each
term remains continuous. Since the logarithms and arctangents which have been considered
here are the only possible sources of discontinuities in the stresses and displacements due to
pyramidal surface loads on the half space, and those discontinuities have been shown to be
obliterated, it follows that those stresses and displacements vary continuously in the half space.
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OBSERVATIONS CONCERNING USE OF PYRAMIDAL LOADS

Remarks on computing procedures
The influence functions KtX, Kf', ... ,Kj, as presented in eqns (24)-(26), are sums of

elementary mathematical functions, so they are readily calculable, but they are voluminous
enough to profit from good organization, especially when effects from many pyramidal loads
are to be combined. Some simplifying features are apparent, such as the repetitive use of the
few transcendental functions In(a +p), In(J3 +p), In(z +p), 8J, 82, 8), the repetition of blocks of
terms such as some in Hf and H~' and the symmetries with respect to a and 13 as illustrated in
Hf and H~Y. Somewhat less obvious is that when contributions to stresses at a given point
(x, y, z) are to be combined for contributions from overlapping pyramids some of the same
corner evaluations (as required by eqn 12) are used for several pyramidal loads. To employ
these latter repetitions advantageously, it is helpful to compute corner evaluations associated
with all the pyramidal bases before adding those for anyone pyramid, then to get the weighted
sum as in eqn (12) by selecting the corners for each pyramid.

A computing program (called SURFAC) was prepared to assemble the sums required to
compute stresses and displacements from the combined action of many pyramids. It does this
first in terms of unassigned peak loads so that boundary condition equations can be assembled
to be used in finding proper peak loads when that is needed, but when the peak loads are
assigned the program can be used for complete evaluation of the stresses and displacements. In
doing this it uses indices assigned to all the lattice points associated with pyramidal bases and
employs a table showing the indices for the nine points for each pyramidal base. The assembly
of this table has been automated, using a program called LATTICE, so that the entire
calculation can proceed rapidly and conveniently. These programs have been used for the
illustrative calculations included here for effects from pyramidal loads.

With loads assigned over only one pyramidal base (that is at only one pyramid point), typical
calculations yielding all the stress and displacement components at anyone point in the body
were found to use about 0.036 seconds of central processor time in a CDC Cyber 73 computer.
When 25 or more interrelated bases were used, this unit rate was reduced by a factor 3 or more.

Comparison of stresses from pyramidal and rectangular elemental loads
A major reason for introducing the pyramidal load elements was to avoid stress dis­

continuities inherent in the use of load elements utilizing uniform loads with jumps between the
elements. In order to compare stresses from pyramidal loads with stresses for example from
elements having uniform loads over rectangles, it is necessary to find what stresses arise from
those uniform loads. To this end some formulas for stresses from uniform rectangular loads, as
abstracted from Ref. [7], are shown in Appendix D. Other formulations for these stresses could
be drawn from Love[3] or Smith and Alavi[4], but those from Ref.[7] are more directly
comparable with the pyramidal formulations since that reference indeed offered an early
approach to the pyramidal formulations.

Comparison of formulas for stresses from uniform rectangular loads, as shown in Appendix
D, with corresponding formulas related to pyramidal loads, as given in eqns (23)-(25), show that
the potentially singular logarithms which were obliterated by extra factors in the eqns (25) are
not thus obliterated with the uniform rectangular loads. Furthermore the jumps in 8J, 82 and 8)
which are obliterated in the eqns (25) are not obliterated in stresses from uniform rectangular
loads. Thus stresses associated with steps in patterns developed with uniform rectangular load
elements entail many distortions of stresses near the surface which are avoided if pyramidal
elements are used.

In order to illustrate how great the differences may be between stresses developed by these
alternative systems, consider the component Ux associated with unit shear loads s(-'T... ) of the
alternative kinds acting over the area where -1 EO x EO 1, -1 EO YEO I. Figure 4 shows the
variation of this stress in two planes (the surface of the half space and the vertical plane where
y =0) as due to the pyramidal load, while Fig. 5 shows corresponding patterns due to the
uniform rectangular load. It can be seen that Ux from the pyramidal load varies gently and
continuously, but with the uniform rectangular load it varies extensively and indeed has a whole
line of singularities. If stresses near the surface of the half space are a significant issue, then the
differences between the two kinds of load elements are important and the pyramidal element
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must be conceded to yield more appropriate stress ,calculations. A further illustration of a
singularity associated with a uniform rectangular elt~ment, though not with the corresponding
pyramidal element, is shown in Fig. 6, which shows the component Tn on surface of the half
space due to unit loads p( - - 0':) of the alternative kinds acting over the area where -1 :>; x :>; I,
-I :>; Y:>; 1. This singularity from the uniform rectangular normal load is more restricted than
that associated with the uniform shear load, but it yet yields an infinite value at the corners of
the rectangle. The corresponding stresses Tn generated by the pyramidal form of load pare
finite and much gentler.

lI/ustrative calculations from multiple pyramidal loads
To illustrate use of multiple pyramidal loads in a practical situation, consider stresses

generated by contact of a cylinder on a half space. The usual assumption that the contact area
is infinitely long is awkward for pyramidal loads, but it can be approximated by making the
contact area long. The contact load varies elliptically in the short direction, so taking the half
width of contact as the unit distance, the usual form of the load is p =Pov(l - x2

). Figure 7
shows an approximation of this load pattern by pyramidal loads, putting pyramidal peaks where
y = :t20 and x = 0, :to.2, :to.4, :to.6, :to.8, :to.9, :to.9S, with respective values of p/Po being 1.00,
0.98,0.92,0.81,0.61,0.46,0.348, so that the load per unit length in the main section is nearly
'IT/2. The far ends of the pattern are placed arbitrarily at y = :t21. In order to introduce shearing
loads, one may assume frictional force proportional to p in the x-direction.
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The program SURFAC was used to calculate stress components due to the load pattern of
Fig. 7 at nearly 400 points on the midplane y =0, indUdirlglthe effect of friction with coefficient
0.5. From these it further found values for the second stress invariant J2• that is

The variations of J2/po thus found at several depths z below the surface of the half space are
shown in Fig. 8. Since the stresses from an infinitely long semielliptical load have been found
analytically by Poritsky, it is possible to compare the values in Fig. 8 with exact values for the
nearly equivalent ideal case, so the ideal values for z =0 are shown as a dashed line in Fig. 8.
As can be seen, the values from SURFAC are nearly like the ideal values, but there is a little
waviness added by the coarseness of the approximation of the surface load. The waviness is
damped rapidly as the depth z increases. The small departures at large values of x reflect the
use of a finitely long contact area, so that agreement with the ideal case at remote points was
not fully achieved even at y =O. These discrepancies from the ideal case are trivial, however, in
comparison with departures that rectangular load elements would have given, for with them the
singularities in tTJ: and tTy at each jump of the frictional load would have produced 14 infinite
spikes in the curve for z =O.

From the results sFlown in Fig. 8, one may infer curves on the plane y =0 along which J2 has
constant values, and this is done in Fig. 9. The curves correspond to some computed by
Hamilton and Goodman [9] using Poritsky's exact solution. The places where their curves differ
noticeably from those derived from the pyramidal load theory are shown by dashed lines in Fig.
9. The discrepancies are small, and some may be mere irregularities of drawing, so again the
agreement with the ideal solution is good, despite some sharp local details in the stress patterns.
Use of more and longer pyramidal loads of course could improve the results from the pyramidal
load theory slightly.

As a final example of use of multiple pyramidal loads, consider a freeing load pattern found
while performing a stress analysis for a surface crack in a plate[l}. The crack was part-circular,
with depth-to-Iength ratio 0.25, it penetrated 0.7 of the plate thickness, and the total stress on it
was to equal a uniform normal load Po. The effects of loads associated with the crack were
expressed in terms of a large new family of crack functions[lO, 11]. In the balancing of effects
of crack loads and surface-freeing loads, the distribution of normal loads needed on the cracked
surface of the plate was found to be that shown in Fig. 10. This figure illustrates the power of
the pyramidal loads to represent a complicated pattern smoothly. The effects of the crack loads
as felt on the plate surface are potentially very complex, but an important issue in the crack
analysis is how well the overall surface boundary conditions are satisfied. The use of the
continuously varying surface loads makes extensive checking of the overall satisfaction of
those conditions feasible. Also, since shearing components of the freeing loads are also needed,
it avoids the introduction of a vast pattern of singularities among stress components on the
surface where much care is needed for the analysis. It is possible to perform surface crack
analyses with stepwise surface load elements, but the use of the continuously varying
pyramidal loads greatly simplifies the problems of satisfying boundary conditions, including
logical problems.

It may be added that crack-analysis freeing load patterns such as that in Fig. 10 have no
direct mechanical significance, they are merely complements to effects from crack functions
which may be chosen in many ways. In this light, the fine adaptability of pyramidal load
representations derived from their automatic interpolation helps greatly in fitting boundary
conditions at points between those where fitting is done directly.

CONCLUSIONS

A new form of elemental load has been introduced for use in stress analyses for a half
space, and formulas have been derived for the implied stress and displacement patterns
presuming loads applied either normally or tangentially. The load elements have a pyramidal
form which imparts continuity and piecewise linear variation in two directions to resultant loads
from many elements. Sums of these elements are well suited to representation of arbitrary load

55 Vol. 16. No. 12-C
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patterns. The formulas for the stresses and displacements, as given by eqns (23)-(26) are
somewhat voluminous because of the many components and load elements treated, but they are
expressed solely in terms of elementary functions and all traces of discontinuous stresses are
obliterated by using limiting values of individual terms. Use of the formulas implies consider­
able arithmetic, but the organization of that arithmetic through use of the summation introduced
by eqn (12) leads to efficient calculation processes for a computer.

A comparison of stresses induced by elemental pyramidal loads or by uniform rectangular
loads, as illustrated by Figs. 4 and S, shows the greatly improved regularity associated with the
pyramidal loads. A comparison with ideal solutions for stresses due to cylindrical contact with
superposed tangential force from friction illustrates the efficiency of the pyramidal elements in
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determining stress distributions, as in Figs. 8 and 9. Finally, brief consideration of freeing
stresses for a crack analysis, as illustrated by Fig. 10, shows that the adaptability and continuity
of multiple pyramidal loads offer logical as well as computational help in performing the
troublesome analysis for surface cracks.

Acknowledgements-The development of the present theory and its applications was supported partly by Battelle's
Columbus Laboratories. partly by the Air Force Flight Dynamics Laboratory. Wright-Patterson Air Force Base. Ohio. and
the Bell Aerospace Company. Niagara Falls. New York under Contract No. F33615-n-C-1739 and partly by the Lewis
Research Center National Aeronautics and Space Administration, Cleveland, Ohio, under Contract Nos. NAS3·17760 and
NAS3·21020. The encouragement received for Drs. L. E. Hulbert and A. T. Hopper of BCL. from Mr. G. E. Maddux of the
AFFDL. and from Mr. Gordon Smith of LeRC is gratefully acknowledged. Messrs. D. F. Gyorke and J. E. Emery assisted
in computer programming and Mr. Michael Tikson of the BCL computer center provided computer time for the illustrative
calculations.

REFERENCES
1. J. C. Bell, Stress Analysis for Structures with Surface Cracks. NASA CR-159400, Report to NASA Lewis Research

Center from Battelle's Columbus Laboratories, under Contract No. NAS3·21020 (1978).
2. T. F. Conry and A. Seirig, A mathematical programming method for design of elastic bodies in contact. 1. Appl. Mech.

38, 387-392 (1971).
3. A. E. H. Love, On stresses produced in a semi-infinite solid by pressure on part of the boundary. Phil. Trans. R. Soc.

Series A, 228, 337-420 (1929).
4. F. W. Smith and M. J. Alavi, Stress intensity factors for a penny shaped crack in a half space. Engng Fracture Mech. 3.

241-254 (1971).
5. S. K. Batra and J. C. Bell, An approximate method for evaluating stresses caused by an arbitrary pressure distribution

on the surface of an elastic half space. Surface Mechanics. Published by ASME (proceedings of an ASME SYmpoSium,
16-19 November t969, Los Angeles, California).

6. G. Lundberg, Elastische Beriihrung lweier Halbraume, Forsch. Geb. lngWes. 10,201-211 (1939).
7. J. C. Bell, Analytical methods for improved fracture analysis, Technical Report AFFDL-TR-75-67, prepared for Air

Force Flight Dynamics Laboratory, Wright-Patterson AFB, by Battelle's Columbus Laboratories (1975).
8. H. Poritsky, Stresses and deflections in cylindrical bodies in contact with application to contact of gears and

locomotive wheels. J. Appl. Mech. 17. 191-201 (1950).
9. G. W. Hamilton and R. E. Goodman. The stress field created by a circular sliding contact. J. Appl. Mech. 33. 371-376

(1966).
10. J. C. Bell, Stresses from arbitrary loads on a circular crack, Int. J. Fracture 15,85-104 (1979).
II. J. C. Bell, Stresses from variously loaded circular cracks, J. Slrucl. Div. Am. Soc. Civ. Engrs 103, 355-376 (1977).

APPENDIX A

Some one-variable indefinite integrals
Integration formulas used in deriving the integrals gjj(a, p, z) include the following ones which are not found in standard

tabulations

! y(x2+a2+b2) y(x2+a2+b2)+x b bx
x2 + a2 dx =In y(a2 + b2) +aarctan ay(x2 + a2 + b2)+ c,

!y(X2 +a2+b2) xy(x2+a2+b2) a2+b2 bx
(x2 +a2)2 dx = 2a2(x2+a2) +""i'Q'ib arctan ay(x2+a2+b2)+ c.

!xY(X
2
+a

2
+b

2
)d ="( 2+ 2+b2)+E. 1 [y(x

2
+a

2
+b

2
)-b]+

x2+a2 x v x a 2 n y(x2+a2+b2)+b c.

!X2y(X:+ a:+ b2~dx = In [y(X2+ a:+ b:) + X] _xy(x2+a2+b2)
(x2+a2)2 y(a2+b2) 2(a2+x2)

a2- b2 bx .
-""2'iib arctan ay(x2 +a2 +b2) +c, If a;t O.

These formulas were given in Ref. [51.

APPENDIX B

if a;t O.

if a;t O.

Some useful infinite integrals
The following integrals are useful in deriving formulas for stress and displacement components. Note that all these

formulas remain valid if a and fl are interchanged together with 6, and 62, and if m and n are assigned any real values.
Moreover, the fourth, fifth, sixth, eighth, and tenth would hold without the summation implied by the operator [...J•• that
is with a and fl being treated as being arbitrary. The quantities p, 6" 62 and 6) are those of the eqns (8).
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r [a
p
'" JO dz = [-a'" In(a + p)J*

I~ [a,"fj"] [ a'"a" ( Z)J--.- 0dz=~ 1-- 0
,p' a2+fj2 p

I~ [~(I_~)]O dz '" [~].,a2+p2 p z+p

I~ [~Jodz = [a,"-IQ"-18jO
, (a2+z2)p "I

r [(a~:~;)p]* dz '" [a'" In(p + p)JO

Ix [ ;a"g" Jo dz = [a,"-2p"-2(1_~) - a;-2p;z + a .. -J/J"-J(p2- a2)8 J*
, (a +Z)2p p (a +z)p I

r[a'"8.1* dz = [a,"+lln(p+p)-a'"z8IJ*

I~ rap ] [I 1 afj Z2 ]--z8J *dz= -a281+-p282--+-8J *
, p 2 2 2 2

I~ rap -!.8J]* dz = [~+~In(p +p)+~ln(a +P)]*
, 2 2 3 6 6r[In(a + p))* dz = [-a In(z + p)- z In(a + p)- P82Jo

I
~ [-an p2+ Z2 ]

, [zln(z+p))*dz= 2--2- ln(a+p) 0

r[a'" In(z + p)J* dz = [a"p - a'"z In(z + p)Jo

r [a: -pIn(a + p)J* dz = [P 282 + pz In(a + p))*

I
~ rap fj2+ Z2 ] [~aJ z(3fj2+ Z2) 1]
, T--2- ln(a+p) °dz= - 6 -Tln(z+P)+6 In(a+p)+3P382o

These formulas can be derived from those in Appendix Aof Ref.[7J.
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Tenns arising in stresses and displacements
The following derivatives and integrals appear in the eqns (21) for the stresses and displacements due to pyramidal

surface loads. For the derivatives, parts which would vanish during evaluation implied by the operator [...J* [as defined by
eqn (12») have been omitted, since they drop from the eqns (21). Further functions needed for the eqns (21) can be found
from those included here by simultaneously interchanging a with p, 81with 82, and 82 with 83'

a B. ~ 18J{a, p, z) =r P2 - Z2) In(a + p)+'ra2- Z2) In(p + p)- apz8J+TP-"i/

il81 I 2 2 ap
ila =tP -z)ln(a+ p)+aPln(p+p)-fjz8J-T

!llilz = -az In(a + p) - pz In(p + p) - ap8J+ zp

il28.a;;/ = PIn(p +p)- P

il287:t= -a In(a +p)- p In(p+p)+2p

!!h.ilailp = p In(a + p)+ a In(p + p)- z8J

i/2 f1 •

~=-zln(a+p)-p8J

r[~]* dz = [Z(-3P;+ Z2) In(a + p)-«{Jz 1n({J+ p)+ a(<<2;3
p2

)In(z+ P)-~81-~8z+Pf8J+T]*

r [~J*dZ= [-Pz In({J+p)+a
2
;p2 In(z+p)_a/18\ +Tf

f.C[~] [ 2 2 2, ilailP *dz= -PZln(a+p)-aZln(JHP)-aJnn(z+p)-;81-~8z+T~]*
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I
'IX [il2g,] , [/3la'-:2) ;la'-/32) a2 pl]
, , ila' *do := ---2-lol/3+P)---2-lol;+pl+a/3:II'+2P-C; *

f f [:~~p]* d2: = [- /3(/32; 3z
2
)lo(a + p) ala'; 3;2) 10(/3 + p)+ al3: In(: + p) + a~: II, + l3~z ill-fill _ a~p]*

I'lx [ill ], , iI;; *d'; '" [-al3lo(/3 + p)- a: 10(: + p)+ /3zll, + apJ*

f f [o~:~p]* d': = [- a
l
- In(13 + p) + /3: In(: + p) + a:lI, _/3{]*

z a a l/3 /33 /3:1 alp af3l
gM. P.:) =7}3/3' - Zl) In(a +p) +a/3; In(/3 + p)-6<a2- 3pl) In(: +p)+T9,+"60,-2113 -3-6

og a l _/3l zp0: = {3: In(fHp)--2- ln(z + p)+a{39'-T

ilgl a l f31 Zl
o{3 = {3: In(a + p) +az In({3+ p)+ a{3ln(z +P)+21J, +21J1-2"9)

og fY- z2 ap0: =-2-In(a + p) + a{31n(f3 + p) - {3z9) - 2

ii'
o;i = -a In(z + p) + (39,

o2g
o{3i = z In(a +p) +a In(: +p)+ f381

olg0/ =-: In(a +p)- (31J3

olg
ilailf; = : In({3 + p) +{31n(: +pl+ alJ,

illg
_1 = (3 In({3 +p) - p
ilail:

olg
ilPil~ = (31n(a + p)+ a In({3 + p)- :9)

r[%']* d: = [(3(a
1

2
- :1) In(/3 + p)+ :(a

l
; (31) In(: + p)- a{3zl/,-~p+~p)]*

r[~~]* dz = [{3((31; 3z
1
1In(a + p)+ a(a

l
; 3:

1
)In({3+ p)-a{3: In(z+ p)- a~zII, - {3~: III +tlJ)+~]*

f [~]* dz = [-ap + az In(z + p)+ a{31n({3 + p) - /lzIJJl*

Ix [02g ] [a2- Z2 an], oailP *dz= -2- ln({3+p)-{3z1n(z+p)-aZIJ1 +z:r *

Ix [o2g ] [{32 - :1 a ], ilpi *dz= -2-ln(a+p)-azln(z+p)-{3ZIJ2+.y *.

APPENDIX D

Formulas for stresses and displacements due to uniform rectangular surface loads
Let load elements be chosen by which a pressure load C, and shear loads Cl and CJ are applied. corresponding to those

of eqn (18). but now uniformly over a rectal\&lliar base. Then, as may be inferred from Ref. [7). the resulting stresses and
displacements may be expressed again by equations of the form (23), but with the influence functions Kf and so forth
replaced by new ones of the forms

and so forth. The evaluations implied by the sUbscript c are made using the four comer pairs of values for a and {3 at the
comers of the rectangle. Thus, letting the comers be where x = X, or X. and Y= Yl and Y•• so that al '" X, - x. a. = X. - X.

/ll '" Y, - Y, p. '" Y. - Y. one takes

[G(a, 13, z)]c = G(a., 13•• z)- G(a" (3., z)+ G(a" Ph z)- G(a., p" z).

Using the same notations p. 1/10 1/1 and IJ) as with pyramidal loads. the appropriate functions to use with uniform rectangular
loads are, from Ref.{7l:



Continuous analysis of stresses from arbitrary surface loads on a half space

GfJ(a. fl. z) = - (a~~Z2) - 21n(fl +p) +(1- 2v)z~ p

GfJ(a,fl. z) =~-In(a +p)-(l- 2v){~-ln(a+ PI}
p z+p

apz
Gff(a, p, z) =- (p2 +Z2)p +9) - (1- 2v)91

GH(a.p. Z)=~-In(p+P)-(l-2v)L ~ p -In(p+ P)}

ap2 a
G{((a. p. z) =- (a 2+ 2) - 2ln(a + p) +(1- 2v)--7-

/' zp z+p

GZZ( a) apz aflz 9
II a./" z =(a2 +Z2)p +(fl2 +Z2)p + )

GZZ( a )-_~2' a./,. z - (a2 +Z2)p

2

Gij(a, fl. z) = - (fl2:ZZ2)p

az2

GrHa.p, z) = (fl2 +Z2)p

Gma,p,z)=-~
p

G"( Q )-~-9
]1 a./" z - (132 +Z2)p ]

u _~
G II(a. p, z) - (a2 +Z2)p

GU( Q )-~-9
21 a./,.z -(a2+z2) ]

Gtj(a. fl, z) =-~
p

GH(a, fl, z) =!+(1- 2v) In(z +p)
P

a a
GHla. fl, z) =--In(a +p)-(l- 2v)-7-+

P z p

Gma. p, z) =!!. -In(fl +p) - (1- 2v'r!--+
P z P

Gfl(a, fl, z) = -z In(p +p) - (1- 2v){P In(z +p) +Z In(fl +p) +a91}

Gir(a, P. z) = 2flln(a +p) +a In(fl +p) - 2z9] - (1- 2v){-a In(fl +p) +z9,}

GMa, p, z) =-p - (1- 2v){-p +z In(z +pI}

Gr,(a, p, z) =-z In(a +p)-(l-2v){a In(z +p)+ z In(a +p)+ fl92}

GZI(a, fl. z) =-p - (1- 2v){-p +z In(z +p)}

G3,(a. fl, z) = 2a In(fl +p) +flln(a +p) - 2z9] - (1- 2v){-flln(a +p) +z9J

Gil(a, fl, z) = -flln(a +p) - a In(p +p) - (1- 2v){flln(a +p)+ a In(fl +p)- z93}

Gi1(a. fl. z) =z In(fl +p) - (I":' 2v){flln(z +p)+ Z In(fl +p)+ al/,}

Gil(a. fl. z) = z In(a +p) - (1- 2v){a In(z +p) +z In(a +p) +{JI/J.
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These influence functions for uniform rectangular loads involve several singularities and jumps. Thus the function
In(a +p) which occurs in GfJ, Gn and Gn is singular where fl =z=0 and a iii O. The function 1n({J +p) which occurs in
Gff. Gn and Gn is singular where a = z=0 and fllliO. and In(z+ p) in Gff is singular where cr. {J and z vanish. The
functions 1/.. 1/2 and 1/) have many jumps on the plane where z=O. In their effects on stresses. these sinluJarjties and jumps
persist here. not being obliterated by extra factors as they are in intluence functions for pyramidaliolds. There are also
many indeterminacies which appear in the influences of rectaJl&uIar loads affecting stresses. The diIcoIItinuities appearing
in expressions for displacements due to the uniform rectangular loads are obliterated by factors muJtiplyjaa them, as is
rea5ODabie. but as noted the stresses from such loads involve many complications which do not ll'ise with pyramidallolds.

Reference(7]. from which these expressions for effects of rectanauJar loads are drawn. also treats the broider cue of
stresses and displaements due to loads varying linearly in both directions over arec~. as illustrated by the ceatrai part
of YII. \(a). This approach provides an alternative approach to getting continuous approximations to arbitrarily distributed
surface loads on a half space. but it is far more cumbersome than the use of pyramidal load elements.


